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The contact process is a model of spread of an infectious disease. Combining
with the result of ref. 1, we prove that the critical exponents take on the mean-
field values for sufficiently high dimensional nearest-neighbor models and for
sufficiently spread-out models with d > 4: h(l) % l−lc as l a lc and q(l) %
(lc −l) −1 as l ‘ lc, where h(l) and q(l) are the spread probability and the sus-
ceptibility of the infection respectively, and lc is the critical infection rate. Our
results imply that the upper critical dimension for the contact process is at most 4.
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tion; mean-field behavior; lace expansion.

1. INTRODUCTION

The contact process was introduced by Harris (8) as a model of spread of an
infectious disease. This model has been studied for more than twenty-five
years, and has been proved to exhibit a phase transition.

Recently it has been shown in ref. 1 that the critical behavior for the
contact process becomes simple under the triangle condition named after a
shape formed out of three infectious routes in space-time. This condition is
expected to hold in spatial dimension d > 4. By using the lace expansion, it
has been proved that a discrete analogue of the triangle condition holds for
unoriented percolation in d ± 6 in ref. 7 and for oriented percolation in
spatial dimension d ± 4 in ref. 10. The contact process closely resembles
an oriented percolation model. As in ref. 3, we can construct an oriented
percolation model which converges to the contact process in a limit of the



temporal spacing e a 0. Applying the lace expansion for discrete models to
the discretized contact process and taking a continuum limit, we prove that
the triangle condition holds for sufficiently high dimensional nearest-
neighbor models and for sufficiently spread-out models with d > 4, which are
defined in Section 2.1. Both models are expected to exhibit the same critical
behavior.

The situation for the contact process, however, is not so simple as that
for discrete models. If we simply estimate the convolution equation
obtained through the lace expansion as in estimating that for discrete models,
we can not take a limit e a 0 (see the introduction of Section 5 for more
details); even if we can take a continuum limit, the expansion does not
converge without any further ideas than those used to prove convergence
of the lace expansion for discrete models. These potential difficulties are
overcome by

1. extracting factors of e from points where at least two infectious
routes in space-time intersect,

2. selecting parameters responsible for convergence of the lace expan-
sion, even if e is very small.

The first point, which is inspired by the idea of ref. 1, enables us to take a
continuum limit. Thanks to the second point, convergence of the lace
expansion is established.

This paper is organized as follows. In Section 2.1, we introduce two
types of the contact process: the nearest-neighbor model and the spread-
out model. We also explain importance of analyzing critical behavior. The
main results are presented in Section 2.2. They are proved by discretizing
the temporal axis, and the discretization in time is performed in Section 3.1.
In Section 3.2, we describe the structure of the proof of a discrete version
of the main theorem. The difficult part of the proof is discussed in Sec-
tion 3.3, where the lace expansion is used. The lace expansion is derived
through repeated applications of the inclusion-exclusion relation, and is
proved in Section 4. We establish convergence of the lace expansion and
existence of a meaningful continuum limit by using the estimates of Sec-
tion 5, which are obtained with the above two major points of this paper.

2. MODELS AND MAIN RESULTS

2.1. The Models

The contact process can be constructed through the graphical repre-
sentation of Harris (see ref. 1 and references therein). Consider the graph
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Zd×R, where Zd and R denote the spatial and temporal components
respectively. Along each time line {x}×R, Poisson points with intensity 1
are placed independently of the other point processes. These points stand
for recovering points from the infection. For each ordered pair of distinct
time lines from {x}×R to {y}×R, infectious arrows are drawn from x to y
by a Poisson process with intensity l Jx, y independently of the other
Poisson processes of arrows and points, where l \ 0 is the infection rate
which is the only parameter in the contact process. We consider the
following two types of the coupling constant Jo, x:

1. the nearest-neighbor model: Jo, x=1{||x||1=1},

2. the spread-out model: Jo, x=
1{0 < ||x||. [ L}

;z1{0 < ||z||. [ L}
,

where ||x||1=;j |xj | and ||x||.=maxj |xj | for x=(x1, x2, ..., xd) ¥ Zd, and
1E denotes the indicator function of the condition E, which takes the value
1 if the condition E is satisfied, otherwise 0. The reason why we consider
the spread-out model as well is presented in the end of Section 2.2.

From now on we use upper case letters for points in Zd×R; particu-
larly we use O to denote the space-time origin. For X ¥ Zd×R, we write
s(X) and y(X) for the spatial and temporal components of X respectively.
X is said to be connected to Y (equivalently Y is connected from X) if there
exists a path in Zd×R from X to Y using infectious arrows and temporal
line segments traversed in the increasing time direction without traversing
recovering points (see Fig. 1). A site X is considered to be connected to
itself. We write X Q Y for the connection from X to Y, and define
C(X)={Y ¥ Zd×R: X Q Y}.

Fig. 1. The graphical representation of the nearest-neighbor model on Z1. The arrows in this
figure are infectious arrows, and the circles are recovering points. This figure shows infectious
routes from the space-time origin O.
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We write Pl and El for the associated probability measure and the
expectation operator. We define the spread probability h(l) and the suscep-
tibility q(l) of the infection as

h(l)=Pl(C(O) 5 (Zd×{t}) ]”, -t \ 0), q(l)= C
s(X)

F
.

0
dy(X) fl(O, X),

where fl(O, X)=Pl(O Q X). The generating function of the cluster size
distribution is

Ml(h)=1−F
.

0
dl e −hl Pl(|C(O)|=l),

where |C(O)| is the Lebesgue measure of C(O) in space-time.
It has been proved that there exists a positive and finite critical infec-

tion rate lc such that h(l)=0 for l [ lc, q(l) <. for l < lc and

˛h(l) \ C1 (l−lc), if 0 [ l−lc [ C −1,

q(l) \ C2 (lc −l) −1, if 0 < lc −l [ C −2,

Mlc(h) \ C3 h1/2, if 0 < h [ C −3.

(2.1)

for some positive constants Ci, C −i, i=1, 2, 3 (see refs. 1–3, and references
therein). The critical infection rate can also be defined as

lc=sup {l: Xl(t) Q 0 exponentially as t ‘.}, (2.2)

where Xl(t)=;X:y(X)=t f
l(O, X) (see ref. 11); when l > lc, Xl(t) does not

vanish because

Xl(t) \ Pl(C(O) 5 (Zd×{t}) ]”) \ h(l) > 0, -t \ 0. (2.3)

It is expected that the observables behave in the following power law
forms near and at the critical infection rate:

˛h(l) % (l−lc)b, as l a lc,

q(l) % (lc −l) − c, as l ‘ lc,

Mlc(h) % h1/d, as h a 0,

where f(X) % g(X) as x Q x0 means that there exist positive and finite con-
stants c1 and c2 such that c1 g(X) [ f(X) [ c2 g(X) for any x sufficiently
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close to x0. The exponents b, c and d are called the critical exponents, which
are expected to depend only on the spatial dimension d and not to depend
on the type of the coupling constant. This independence is called univer-
sality. The inequalities in (2.1) show that the critical exponents obey the
bounds b [ 1, c \ 1 and d \ 2, if they exist.

As in many other statistical mechanical models, it is expected (and is
proved for some cases in this paper) that there exists dc such that b=1,
c=1 and d=2 as soon as d is greater than dc. These dimension-indepen-
dent values are called the mean-field exponents, and dc is called the upper
critical dimension, which is expected to be 4 for the contact process.

Barsky and Wu (1) have proved that the critical exponents take on the
mean-field values under the triangle condition defined as

sup
X:
||s(X)||1 \ r,
y(X) \ 0

h
lc(X) Q 0, as r ‘., (2.4)

where

h
l(X)= C

s(Y), s(Z)
F
.

y(X)
dy(Y) F

.

y(Y)
dy(Z) fl(O, Z) fl(X, Y) fl(Y, Z).

To prove the mean-field property, it thus suffices to prove that the
triangle condition holds3 above the expected upper critical dimension, 4.

3 For the contact process on a homogeneous d-ary tree with nearest-neighbor interaction, it
has been proved in ref. 14 that the triangle condition holds when d \ 5. This result has been
extended later in ref. 12 to the case of d \ 2.

2.2. The Main Results

We prove a certain condition that implies the triangle condition. We
define the Fourier transform of fl(O, X) as

f̂l(K)= C
s(X)

F
.

0
dy(X) fl(O, X) e iK ·X, K=(k, w) ¥Pd ×R,

where Pd=[−p, p]d and K·X=k·s(X)+w y(X). Our main results can
be stated as follows.

Theorem 2.1. For the nearest-neighbor model with d ± 4, and for
the spread-out model with L ± 1 and d > 4, the critical exponents take on
the mean-field values: b=c=1 and d=2.
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The triangle condition (2.4) immediately follows from the following
theorem and the Riemann–Lebesgue lemma, and hence we obtain
Theorem 2.1, thanks to the result of ref. 1.

Theorem 2.2. Under the same condition as in Theorem 2.1, the
infrared bound

|f̂l(K)| [
1

Cs ||k||2+Cy |w|
, uniformly in l < lc,

holds for some positive constants Cs and Cy, where K=(k, w) and ||k||2 —
||k||22=;j k2j .

The spread-out model is a model on a low-dimensional lattice with
large coordination number, and is expected to be in the same universality
class as the nearest-neighbor model. The reason why we consider the
spread-out model as well is that we can prove the results for d > 4 by
taking L to be large instead of taking d to be large as for the nearest-
neighbor model (see Section 3.2 for details). Therefore the upper critical
dimension dc is expected to be at most4 4 by the above results.

4 A necessary condition for dc=4 can be proved by an argument analogous to that of ref. 13.

3. PROOF OF THEOREM 2.2

We prove Theorem 2.2 along the following line:

1. constructing an oriented bond percolation model on Zd× e Z which
converges to the contact process in a limit e a 0 (Section 3.1),

2. applying the lace expansion to the connectivity function for this
oriented percolation (Section 3.3),

3. estimating the irreducible two-point functions appearing in the lace
expansion to obtain a e-uniform infrared bound (Section 5).

3.1. Discretization

The discretized model is the following oriented bond percolation. Let
e ¥ (0, 1) be fixed. As in the continuous-time case, we use upper case letters
for points in Zd× e Z. We call an ordered pair (X, Y) of sites with
y(X)+e=y(Y) a bond from X to Y; (X, Y) is called a temporal bond if
s(Y)=s(X), otherwise a spatial bond. We call X and Y the bottom and
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the top of (X, Y) respectively. A bond (X, Y) is open with probability
p(X, Y) defined as

p(X, Y)=l eJX, Y 1{(X, Y) is a spatial bond}+(1− e) 1{(X, Y) is a temporal bond}, (3.1)

where JX, Y=Js(X), s(Y), and closed with probability 1−p(X, Y), indepen-
dently of the other bonds. Connections for these oriented percolation are
made along open bonds (see Fig. 2).

We write Ple and Ele for the associated probability measure and the
expectation operator. It can be proved as in ref. 3 that Ple converges weakly
to Pl as e a 0. Therefore the contact process is well-approximated by the
above discretized model.

As in the continuous-time case, we write X Q Y for the connection
from X to Y, and C(X) for the set of sites connected from X. We define
the susceptibility as

qe(l)=e C
X
jle(O, X),

where jle(O, X) — Ple(O Q X) is the connectivity function from O to X.
This discretized model also undergoes a phase transition, and we define its
critical point l ec as (2.2) by replacing Xl(t), t ¥ R with Xle(t) —
;X:y(X)=t j

l
e(O, X), t ¥ e Z. The Fourier transform of jle(O, X)

ĵle(K)=e C
X
jle(O, X) e iK ·X, K ¥Pd ×

P1

e
, (3.2)

is well-defined for l < l ec and satisfies qe(l)=ĵ
l
e(O).

Fig. 2. This figure is obtained from Fig. 1 by discretizing the temporal axis. The arrows in
this figure are open spatial bonds, and the triangles are open temporal bonds. We shade the
triangles connected from O.
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We can see l ec Q lc as e a 0 along the following line: for X ¥ Zd×R, we
definefle(O, X)=jle(O, [X]e),where[X]e=(s(X), [y(X)/e] e) ¥ Zd× e Z,
and redefine Xle(t) as a function of t ¥ R by using fle(O, X) instead of
jle(O, X). For any l, t \ 0, Xle(t) converges to Xl(t) as e a 0 because
fle(O, X) Q fl(O, X) as e a 0 for any l \ 0, X ¥ Zd×R (see ref. 14). Sup-
pose lim infe a 0 l

e
c < lc. Then there exists l ¥ (lim inf l ec, lc) such that, in

a limit t ‘., Xle(t) does not converge to zero for sufficiently small e
because of the discrete version of the inequality (2.3), in spite of the
exponential decay of Xl(t), which is a contradiction. We can also derive
a contradiction in another case, lim supe a 0 l

e
c > lc, and hence obtain

lc=lime a 0 l
e
c.

We obtain Theorem 2.2 by using the e-uniform infrared bound of the
following theorem and the dominated convergence theorem.

Theorem 3.1. 1. For e0 < 1, there exists d0 ¥ (4,.) such that, for
the nearest-neighbor model with d > d0 and e < e0, the following infrared
bound holds:

|ĵle(K)| [
1

Cs ||k||2+Cy |w|
, uniformly in l < l ec ,

for some e-independent positive constants Cs and Cy.
2. For d > 4, there exists L0 <. such that, for the spread-out model

with L > L0 and e < 1, the above infrared bound holds.

3.2. Structure of the Proof of Theorem 3.1

We omit the subscript e and the superscript l of various quantities in
the rest of this paper. We also omit the superscript e of l ec.

The proof of Theorem 3.1 is achieved by showing that the following
three statements hold.

1. For every X ¥ Zd× e Z,

K(X)=e2 C
Y, Z,
OŒ, Oœ

JO, OŒ
|J|

JO, Oœ
|J|

j(OŒ, Z) j(X+Oœ, Y) j(Y, Z),

T(X)=e2 C
Y, Z

{j(O, Z) j(X, Y) j(Y, Z)−DO, Z DX, Y DY, Z},

W(X)=e C
Z

||s(Z)||2 j(O, Z) j(X, Z).
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are finite for l < lc and continuous in l [ lc, where DO, X —;.

n=0 (1− e)n

×1{X=(o, ne)}is the probability that there is an open path from O to X made
of only temporal bonds5.

5 In refs. 7 and 10, dO, X — 1{O=X} has been used instead of DO, X in defining T(X). We must
use DO, X for the models considered in this paper to obtain a desirable bound on T(X) in
large d or L (see Section 3.4).

2. For d > 4 and l [ |J| −1 — (;X JO, X) −1, there exist e-independent
finite constants CK, CT, CW and C −W such that

K(X) [ CK o, T(X) [ CT m, W(X) [ 3
CW r, if X=O,

C −W z, if X ] O.
(3.3)

For the nearest-neighbor model, o=m=r=z=d −1. For the spread-out
model,

o=L −d (ln L)d/2, m=o1/2, r=L4−d (ln L)d, z=L2 m.

3. We define Pa for the following set of inequalities:

l |J| [ a, K(X) [ a CK o, T(X) [ a CT m,

W(X) [ 3
a CW r, if X=O,

a C −W z, if X ] O.

(3.4)

Fix l ¥ [|J| −1, lc) arbitrarily. If we take d or L to be sufficiently large,
then P4 implies P3.

The first and second statements imply that K(X), T(X) and W(X) are
small satisfying P3 for small l and continuous up to lc for every
X ¥ Zd× e Z. The third statement implies that, for sufficiently large d or L,
there is a forbidden region in the graph of K(X), T(X) and W(X).
Therefore we can see that the stronger inequalities in P3 indeed hold at lc.
The infrared bound is obtained in the course of the proof of the third
statement.

The finiteness of K(X), T(X) and W(X) for l < lc in the first
statement follows from the discrete version of the identity (2.2), and their
continuity in l [ lc follows from the continuity of j(O, X) in l \ 0 and
the monotone convergence theorem.
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The Green function G(O, X) for the random walk on Zd× e Z is
defined by the transition probability

pG(O, X)=
eJO, X

|J|
1{(O, X) is a spatial bond}+(1− e) 1{(O, X) is a temporal bond}, (3.5)

and satisfies the convolution equation

G(O, X)=dO, X+C
Z

pG(O, Z) G(Z, X). (3.6)

We can see j(O, X) [ G(O, X) in l [ |J| −1 by comparing (3.1) and (3.5)
and following the way of proving Lemma 4.1 of ref. 7. The second state-
ment follows from this inequality and bounds on the quantities KG(X),
TG(X) and WG(X), which are proved in Section 3.4, defined by replacing
j with G in the definition of K(X), T(X) and W(X) respectively.

The difficult part of the proof of Theorem 3.1 is to obtain the third
statement, and here the lace expansion is used.

3.3. Bootstrapping Argument

We describe the outline for deriving the stronger inequalities in P3

under the weaker inequalities in P4. We suppose e [ 1/3 in the rest of this
paper; the remaining case of e > 1/3 can be proved with slight modifica-
tions, and we omit this case in this paper.

We obtain in Section 4 the convolution equation for the connectivity
function

j(O, X)=CN(O, X)+ C
(U, V)
CN(O, U) p(U, V) j(V, X)

+(−1)N+1 RN+1(O, X),

where CN(O, X)=;N
n=0 (−1)n gn(O, X), gn(O, X) is the irreducible two-

point function, and RN(O, X) is a remainder, which are explained in Sec-
tion 4. Taking the Fourier transform of the above equation, we obtain

ĵ(K)=
ĈN(K)+(−1)N+1 R̂N+1(K)

1−P(K) ĈN(K)/e
, (3.7)

where

P(K)=C
X

p(O, X) e iK ·X={1− e+l |J| e D(k)} e iwe,
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with D(k)=;x Jo, x e ik · x/|J|, which is d −1;d
j=1 cos kj for the nearest-

neighbor model. We put hats as ĈN(K) and R̂N+1(K) to describe the
Fourier transforms of CN(O, X) and RN+1(O, X) respectively, as we
defined ĵ(K) in (3.2). Under the inequalities in P4, we obtain in Section 5.1
the following bounds on the irreducible two-point functions:

|ĝn(K)| [ 3
e+O(o) e2, for n=0,

O(o) O(m)n−1 e2, for n \ 1.
(3.8)

In Section 5.2, we obtain the inequality

|R̂N+1(K)| [ ĝN(O) |p| q(l)/e, (3.9)

where |p|=P(O). Therefore for sufficiently large d or L, we can take N to
infinity to obtain ĈN(K) Q Ĉ(K)=e+O(o) e2 and R̂N+1(K) Q 0. These
facts enable us to rewrite ĵ(K) as

ĵ(K)=
Ĉ(K)

1−l |J| D(k) e iwe Ĉ(K)−(1− e) e iwe Ĉ(K)/e

=
Ĉ(K)/Ĉ(O)

l |J| {1−D(k)}+P(k, 0)
1−e iwe

e
+P(K)

Ĉ(O)− Ĉ(K)

eĈ(O)
+q(l) −1

,

(3.10)

where we used the identity

q(l)=ĵ(O)=
Ĉ(O)

1−l |J| Ĉ(O)−(1− e) Ĉ(O)/e
.

The numerator is non-negative for sufficiently large d or L, and thus the
denominator is also non-negative. Therefore6

6 In fact, the inequality (3.11) holds up to lc, if d is sufficiently large or if d > 4 and L is suffi-
ciently large. Since we know for the spread-out model that lc=lc |J| \ 1, we obtain the
inequality 0 [ lc −1 [ O(o), which is weaker than the result lc −1 % L −d for d \ 3 of ref. 4.
We can find in ref. 4 the estimates for d=1, 2 as well.

l |J| [
1−(1− e) Ĉ(O)/e

Ĉ(O)
=1+

e− Ĉ(O)

e Ĉ(O)
[ 1+O(o). (3.11)
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Next we estimate the denominator of the right side of (3.10). By
e [ 1/3 and (3.11), we obtain

P(k, 0) \ 1− e−l |J| e \ 1
3 {1−O(o)},

and thus obtain P(k, 0) \ 0 for sufficiently large d or L. Together with the
trivial inequalities

l |J| \ 1, q(l) −1 \ 0, 1−D(k) \ 0, R[1−e iwe] \ 0,

we obtain

:l |J| {1−D(k)}+P(k, 0)
1−e iwe

e
+P(K)

Ĉ(O)− Ĉ(K)

e Ĉ(O)
+q(l) −1:

\ :l |J| {1−D(k)}+P(k, 0)
1−e iwe

e
+q(l) −1:− :P(K)

Ĉ(O)− Ĉ(K)

e Ĉ(O)
:

\ 3 :l |J| {1−D(k)}+P(k, 0)
1−e iwe

e
:2+q(l) −24

1/2

− :P(K)
Ĉ(O)− Ĉ(K)

e Ĉ(O)
:

\ 3{1−D(k)}2+P(k, 0)2 :1−e iwe

e
:241/2− :P(K)

Ĉ(O)− Ĉ(K)

e Ĉ(O)
:.(3.12)

In Section 5.3, we obtain

|Ĉ(O)− Ĉ(K)| [C
n

1 ||k||2

2 d
Gsn+|w| Gyn2 , (3.13)

where Gsn=e;X ||s(X)||2 gn(O, X) and Gyn=e;X y(X) gn(O, X). We
show in Section 5.3 that, under the inequalities in P4,

Gyn [ 3
O(o) e2, for n=0,

n O(o) O(m)n−1 e2, for n \ 1,

Gsn [ 3
O(z) e2, for n=0,

n2 O(z) O(m)n−1 e2, for n \ 1,

(3.14)

and thus ;n G
y
n [ O(o) e2 and ;nG

s
n [ O(z) e2 for sufficiently large d or L.

By using (3.13) and

1−D(k) \
||k||2

2 p2 d
, |1−e iwe| \

2 e
p

|w|,
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the right side of (3.12) is bounded from below by

1

`2
31−D(k)+

2
p

P(k, 0) |w|4− : P(K)

e Ĉ(O)
: C
n

1 ||k||2

2 d
Gsn+|w| Gyn2

\
1

`2
3As {1−D(k)}+

2
3 p

Ay |w|4 , (3.15)

where

As=1−`2 p2 : P(K)

e Ĉ(O)
: C
n
Gsn, Ay=3 P(k, 0)−

3

`2
p : P(K)

e Ĉ(O)
: C
n
Gyn.

For sufficiently large d or L, As \ 1−O(z) and Ay \ 1−O(o). Following
the way of bounding TG(X) presented in the next section, we use the
inequalities (3.11) and (3.15) to obtain

Ka — sup
X

K(X) [ CK o+O(o z), Ta — sup
X

T(X) [ 2 CT m+O(m z).

(3.16)

Finally we bound W(X). Integrating by parts, we have

W(X)=˛ C
d

j=1
F
Pd×

P1
e

dK
(2 p)d+1

|“jĵ(K)|2, if X=O,

− C
d

j=1
F
Pd×

P1
e

dK
(2 p)d+1

{“2jĵ(K)} ĵ(−K) e −iK·X, if X ] O,

where “j=“/“kj. We differentiate ĵ(K) in (3.10) to obtain

“jĵ(K)=ĵ(K)
“jĈ(K)

Ĉ(K)
+ĵ(K)2 3l |J| e iwe “jD(k)+

P(K) “jĈ(K)

e Ĉ(K)
4 ,

“
2
jĵ(K)=ĵ(K)

“
2
jĈ(K)

Ĉ(K)
+2ĵ(K)2

“jĈ(K)

Ĉ(K)
3l |J| e iwe “jD(k)+

P(K) “jĈ(K)

e Ĉ(K)
4

+ĵ(K)2 3l |J| e iwe “2jD(k)+2 l |J| e iwe “jD(k)
“jĈ(K)

Ĉ(K)

+
P(K) “2jĈ(K)

e Ĉ(K)
4+2 ĵ(K)3 3l |J| e iwe “jD(k)+

P(K) “jĈ(K)

e Ĉ(K)
42.
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Thanks to the estimates of Section 5.3, Ĉ(K) is differentiable term by term.
Together with the spatial symmetry of gn(O, X), |“ sjĈ(K)| [ d −1 ;n G

s
n for

s=1, 2. Following the way of bounding WG(X) presented in the next
section, and using the mean value theorem as in Section 4.3.3(c) of ref. 7
and the inequalities (3.11), (3.15) and (3.16), we obtain

W(O) [ 2 CW r+O(r z)+
1
d
O(z2), (3.17)

and the stronger inequality for W(X) with X ] O by choosing C −W suffi-
ciently large depending only on CK, CT and CW.

We have seen that P4 implies P3 if d or L is sufficiently large. The
proof of the third statement in Section 3.2 is now completed, assuming
estimates of Sections 4 and 5. The infrared bound has been obtained in
(3.15).

3.4. Bounds on the Gaussian Quantities

We prove that the quantities KG(X), TG(X) and WG(X) are bounded
as in (3.3).

We begin with estimating TG(X). Using the identity

|Ĝ(K)|2 Ĝ(K)− |D̂(K)|2 D̂(K)

=Ĝ(K)* {Ĝ(K)− D̂(K)}2+2 |Ĝ(K)− D̂(K)|2 D̂(K)

+2 {Ĝ(K)− D̂(K)} |D̂(K)|2+{Ĝ(K)− D̂(K)}* {D̂(K)}2,

we have

TG(X) [ F
Pd×

P1
e

dK
(2 p)d+1
3 |Ĝ(K)| |Ĝ(K)− D̂(K)|2+2 |Ĝ(K)− D̂(K)|2 |D̂(K)|4

+2 e2 C
Y, Z
DO, Z {G(X, Y)−DX, Y} DY, Z

+e2 C
Y, Z

{G(O, Z)−DO, Z} DX, Y DY, Z.(3.18)

First we estimate the integral of (3.18). Taking the Fourier transform of the
convolution equation (3.6), we have

Ĝ(K)=
e

1−PG(K)
=

1

1−D(k)+PG(k, 0)
1−e iwe

e

, (3.19)
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where PG(K)=;X pG(O, X) e iK ·X. By using the trivial inequalities

0 [ 1−D(k) [ 2, R[1−e iwe] \ 0, |1−e iwe| \
2 e
p

|w|,

PG(k, 0) \ 1−2 e \
1
3
,

the integral of |Ĝ(K)| |Ĝ(K)− D̂(K)|2 in (3.18) is bounded by

F
Pd×

P1
e

dK
(2 p)d+1

D(k)2

3 1

`2
31−D(k)+

2
3p

|w|44
3

[ F
Pd

ddk
(2 p)d

9 D(k)2

`2 {1−D(k)}2
, (3.20)

and the integral of |Ĝ(K)− D̂(K)|2 |D̂(K)| in (3.18) is bounded by

F
Pd×

P1
e

dK
(2 p)d+1

D(k)2

3 1

`2
31−D(k)+

2
3p

|w|44
2
[ F

Pd

ddk
(2 p)d

3 D(k)2

1−D(k)
. (3.21)

It has been proved in Appendix A of ref. 9 that the right sides of (3.20) and
(3.21) are bounded by a d-independent multiple of (d−4) −1 for the nearest-
neighbor model, or by an L-independent multiple of L −d (ln L)d/2 for the
spread-out model.

Since KG(X) is bounded by (3.20), this completes the proof of the
bound on KG(X).

Next we estimate the second sum in (3.18)

e2 C
Y, Z

{G(O, Z)−DO, Z} DX, Y DY, Z.

The first sum of (3.18) can be estimated in the same way. Using the
Schwarz inequality, we have

e2 C
Y, Z

{G(O, Z)−DO, Z} DX, Y DY, Z

[ 3 e C
.

m=0

1 e C
m

n=0
DX, X+nG DX+nG, X+mG 2

241/2

×3 e C
.

m=0
{G(O, X+m G)−DO, X+mG}24

1/2

, (3.22)
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where G=(o, e). The quantity in the former square root sign is bounded
by

e3 C
.

m=0
(m+1)2 (1− e)2m=

1+(1− e)2

(2− e)3
< 1.

The sum in the latter square root sign of (3.22) must be estimated sepa-
rately depending on whether s(X) is equal to o or not. If s(X) ] o, then
we use the spatial symmetry of the two-point function to obtain

2 d e C
.

m=0
{G(O, X+m G)−DO, X+mG}2 [ e C

Z
{G(O, Z)−DO, Z}2, (3.23)

which is bounded by the right side of (3.21). If on the other hand s(X)=o,
we can not directly use the spatial symmetry of the two-point function as
above. However if a random walker reaches X+m G=(o, y(X)+m e)
from O by taking at least one spatial step, then there exist n < m+y(X)/e
and y ¥ Zd with Jo, y > 0 such that the random walker taking only temporal
steps to (o, n e) takes the first spatial step to (y, (n+1) e) and reaches
(o, y(X)+m e). Therefore

G(O, X+m G)−DO, X+mG [ C
m+y(X)/e

n=0
(1− e)n C

Y

eJO, Y
|J|

×{G(Y, X+(m−n) G)−DY, X+(m−n) G}.

Using this inequality and the Schwarz inequality, we have

e C
.

m=0
{G(O, X+m G)−DO, X+mG}2

[ C
n, nŒ

(1− e)n+nŒ C
Y, YŒ

eJO, Y
|J|

eJO, YŒ
|J|

×3 e C
m

{G(Y, X+(m−n) G)−DY, X+(m−n)G}

×{G(YŒ, X+(m−nŒ) G)−DYŒ, X+(m−nŒ)G}4

[ 3 e C
n

(1− e)n C
Y

JO, Y
|J|
3 e C

m
{G(Y, X+(m−n) G)−DY, X+(m−n)G}24

1/242.
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Now we can use the spatial symmetry of the two-point function as in
(3.23). The proof of bounding TG(X) is completed.

Finally we bound WG(X). Integrating by parts, we have

WG(X)=˛ C
d

j=1
F
Pd×

P1
e

dK
(2 p)d+1

|“jĜ(K)|2, if X=O,

− C
d

j=1
F
Pd×

P1
e

dK
(2 p)d+1

{“2jĜ(K)} Ĝ(−K) e −iK·X, if X ] O.

We differentiate the right side of (3.19) to obtain

“jĜ(K)=Ĝ(K)2 e iwe “jD(k),

“
2
jĜ(K)=2 Ĝ(K)3 {e iwe “jD(k)}2+Ĝ(K)2 e iwe “2jD(k).

(3.24)

Therefore WG(O) and the contribution to WG(X) with X ] O from
Ĝ(K)3 {e iwe “jD(k)}2 are bounded by

C
d

j=1
F
Pd×

P1
e

dK
(2 p)d+1

{“jD(k)}2

3 1

`2
31−D(k)+

2
3p

|w|44
4

[ C
d

j=1
F
Pd

ddk
(2 p)d

18 {“jD(k)}2

{1−D(k)}3
.

In Appendix B of ref. 6 and Appendix A of ref. 9, it has been proved that
the right side is bounded by a d-independent multiple of (d−4) −1 for the
nearest-neighbor model, or by an L-independent multiple of L2−d (ln L)d

for the spread-out model. The contribution to WG(X) with X ] O from the
second term of (3.24) is equal to the Fourier transform of

e C
Z

G(X, Z) C
Y, OŒ

G(O, Y)
eJO, OŒ

|J|
||s(OŒ)||2 G(Y+OŒ, Z).

This is bounded by

e2 C
Y, Z, OŒ

JO, OŒ
|J|

||s(OŒ)||2 3{G(X, Z) G(OŒ, Y+OŒ) G(Y+OŒ, Z)

−DX, Z DOŒ, Y+OŒ DY+OŒ, Z}+DX, Z DOŒ, Y+OŒ DY+OŒ, Z 4

[C
OŒ

JO, OŒ
|J|

||s(OŒ)||2 {TG(X−OŒ)+ds(X), s(OŒ)} [ |V| TaG+Va , (3.25)
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where TaG=supX TG(X) and

|V|=C
X

JO, X
|J|

||s(X)||2, Va=sup
X

JO, X
|J|

||s(X)||2. (3.26)

Since |V|=1 and Va=(2 d) −1 for the nearest-neighbor model and |V|=
O(L2) and Va=O(L2−d) for the spread-out model, the right side of (3.25) is
O(d −1) and O(L (4−d)/2 (ln L)d/4) respectively. The proof of the bound on
WG(X) is now completed.

4. THE LACE EXPANSION

We use the lace expansion to investigate the infrared behavior of the
connectivity function. The lace expansion produces a convolution equation
(4.1) for the connectivity function. The expansion can be derived through
the inclusion-exclusion approach or the algebraic method. Both derivations
lead to the same result.

First we make several definitions. For a bond set B, X is said to be
connected to Y off B if X is connected to Y without using bonds in B. We
define C(U, V)(X) for the set of sites connected from X off (U, V). A bond
(U, V) is said to be pivotal for the connection from X to Y if X Q U and
V Q Y ¨ C(U, V)(X). We define Bpiv(X, Y) for the set of pivotal bonds for the
connection from X to Y; we note that Bpiv(X, Y) is a random set depending
on a configuration C, which is a collection of states of bonds. X is said to
be doubly connected to Y if X Q Y and Bpiv(X, Y)=”; we write X — Y for
this event. We define E(V, X; C) for C … Zd× e Z to be the event satisfying the
following conditions:

• there is at least one open path from V to X passing through C,
• either Bpiv(V, X)=” or there are no open paths passing through C

from V to the bottom of the last bond of Bpiv(V, X) ]”.

Proposition 4.1 (The Lace Expansion). For N \ 0,

j(O, X)=CN(O, X)+ C
(U, V)
CN(O, U) p(U, V) j(V, X)

+(−1)N+1 RN+1(O, X), (4.1)

where CN(O, X)=;N
n=0 (−1)n gn(O, X). The irreducible two-point func-

tion gn(O, X) is defined as
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gn(O, X)

=˛
P(O — X), for n=0,

C
(U1, V1)

p(U1, V1) · · · C
(Un, Vn)

p(Un, Vn) P 1O — U1, 3
n

i=1
E(Vi, Ui+1; C(Ui, Vi)(Vi−1))

2,

for n \ 1,

and the remainder RN(O, X) is defined as

RN(O, X)

=˛
C
(U, V)

p(U, V) P(O — U, V Q X ¥ C(U, V)(O)), for N=1,

C
(U1, V1)

p(U1, V1) · · · C
(UN, VN)

p(UN, VN)

×P 1O — U1, 3
N−1

i=1
E(Vi, Ui+1; C(Ui, Vi)(Vi−1)), VN Q X ¥ C(UN, VN)(VN−1)2 ,

for N \ 2,

provided that V0=O and Un+1=X.

Proof. Since the lace expansion for oriented percolation has been
proved in ref. 10 by the algebraic method, we prove it below by the inclu-
sion-exclusion approach7.

7 Although the proof is similar to that of Proposition 2.3 of ref. 7, thanks to the construction
of the models, no nested expectations as in ref. 7 appear.

First we prove (4.1) for N=0. We can divide the event O Q X into
two disjoint cases: either Bpiv(O, X) is empty or not. If O Q X and
Bpiv(O, X) ]”, then there is an open bond (U, V) ¥ Bpiv(O, X) satisfying
O — U: (U, V) is the first bond of Bpiv(O, X), and O Q X is realized if and
only if (U, V) is open. Since the state of (U, V) is independent of the event
that (U, V) is the first bond of Bpiv(O, X),

j(O, X)=P(O Q X, Bpiv(O, X)=”)+P(O Q X, Bpiv(O, X) ]”)

=P(O — X)+ C
(U, V)

p(U, V) P(O — U, (U, V) ¥ Bpiv(O, X)).
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By the definition of the pivotal bond and the inclusion-exclusion relation,
we have

P(O — U, (U, V) ¥ Bpiv(O, X))=P(O — U, V Q X ¨ C(U, V)(O))

=P(O — U, V Q X)

−P(O — U, V Q X ¥ C(U, V)(O)).

Since y(V)=y(U)+e, O — U is independent of V Q X, and thus the first
term of the right side is equal to g0(O, U) j(V, X). Now we have obtained
the result (4.1) for N=0.

Next we expand R1(O, X) and prove (4.1) for N=1. We divide the
event V Q X ¥ C(U, V)(O) into two cases: either there is or is not an open
bond (UŒ, VŒ) ¥ Bpiv(V, X) satisfying UŒ ¥ C(U, V)(O); if there are no such
pivotal bonds, then the event E(V, X; C(U, V)(O)) occurs. Therefore

P(O — U, V Q X ¥ C(U, V)(O))

=P(O — U, E(V, X; C(U, V)(O)))+ C
(UŒ, VŒ)

p(UŒ, VŒ) P 1
O — U, E(V, UŒ; C(U, V)(O)),

(UŒ, VŒ) ¥ Bpiv(V, X)
2 .

(4.2)

We have exploited again the fact that the state of (UŒ, VŒ) is independent of
the event that (UŒ, VŒ) is the first bond of Bpiv(V, X) with O Q UŒ off
(U, V). As in the case of N=0, it follows from the definition of the pivotal
bond, from the inclusion-exclusion relation and from the Markov property,
that

P 1
O — U, E(V, UŒ; C(U, V)(O)),

(UŒ, VŒ) ¥ Bpiv(V, X)
2

=P(O — U, E(V, UŒ; C(U, V)(O))) j(VŒ, X)−P 1
O — U, E(V, UŒ; C(U, V)(O)),

VŒQ X ¥ C(UŒ, VŒ)(V)
2 .

Finally we substitute the above identity to (4.2) to obtain

R1(O, X)=g1(O, X)+ C
(UŒ, VŒ)

g1(O, UŒ) p(UŒ, VŒ) j(VŒ, X)−R2(O, X),

and thus obtain the result (4.1) for N=1.
The remaining expansion for N \ 2 can be proved inductively. L
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5. ESTIMATES

In this section, we estimate ĈN(K), R̂N+1(K) and ĈN(O)− ĈN(K),
which have been used in Section 3.3 to prove the infrared bound on the
connectivity function.

In order to estimate ĈN(K), R̂N+1(K) and ĈN(O)− ĈN(K), we use the
van den Berg–Kesten inequality (the BK inequality). We begin with intro-
ducing this inequality without its proof; the proof can be found in ref. 5.
We can introduce a natural partial order among configurations, denoted by
C [ CŒ, which is defined to hold if 1{(X, Y) is open on C} [ 1{(X, Y) is open on CŒ} for
any (X, Y). An event E is said to be increasing if 1{E occurs on C} [ 1{E occurs on CŒ}

holds for C [ CŒ. An example of an increasing event is that O Q X off
(U, V) for some bond (U, V). For two events E1 and E2, we define E1 p E2
for the event that E1 and E2 occur disjointly: there exists a bond set B such
that E1 occurs by using bonds in B and E2 occurs without using bonds
in B. For example,

{O Q X} p {OŒQ XŒ}=0
B

{{O Q X off B} 5 {OŒQ XŒ off Bc}},

where Bc is the complement of a bond set B.

Proposition 5.1 (The BK Inequality).

P(E1 p E2) [ P(E1) P(E2),

holds for any increasing events E1 and E2.

Next we explain a potential difficulty involved in taking e a 0, and how
to overcome it. We have obtained the lace expansion for the connectivity
function and obtained (3.7). ĈN(K) is an alternating sum of {ĝn(K)}Nn=0.
Suppose that we naively use the BK inequality to estimate the irreducible
two-point functions as in estimating those for discrete models. Then we
have, for example,

|ĝ0(K)| [ e C
X
j(O, X)2=e+e C

X
k(O, X)2, (5.1)

where k(O, X)=P(O M X) and O M X means that there exists a non-zero
open path from O to X. The latter term of the right side is O(1); what is
worse, |ĝn(K)| [ O(e −2n) for n \ 1 (see Section 5.1.2). Therefore we can not
obtain a meaningful upper bound on |ĈN(K)|, and hence the infrared
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behavior for the connectivity function can not be seen. This is due to the
fact that the number of summations is much larger than that of factors
of e. This is the difficulty involved in naive estimates in e a 0.

The key observation to overcome the above difficulty is that we can
derive a factor of e from a point where at least two disjoint open paths
leave or enter. This idea is an extension of the idea used in ref. 1 to extract
correct factors of e. Let us consider the case of g0(O, X)=P(O — X) with
X ] O for example. This is the probability that there exist at least two non-
zero disjoint open paths from O to X. Since at most one temporal bond
grows out of every site, at least one of two non-zero disjoint open paths
goes out of O with a spatial bond, and at least one of those comes into X
with another spatial bond. Thanks to this close observation and the BK
inequality, we obtain in the proof of Lemma 5.2

|ĝ0(K)| [ e+l2 e3 C
X, OŒ, XŒ

JO, OŒ JXŒ, X

×{k(O, X) j(OŒ, XŒ)+j(OŒ, X) k(O, XŒ)}. (5.2)

The latter term of the right side is O(e2) in contrast with (5.1). We have
thus achieved deriving extra factors of e, which enable us to control a limit
e a 0.

At the end of the introduction of this section, we define several con-
nection notations.

{O ' X}={(O, G) is open} p {GQ X},

{O SQ X}= 0
OŒ:s(OŒ) ] o

{{(O, OŒ) is open} p {OŒQ X}},

{O “ X}={O Q X−G} p {(X−G, X) is open},

{O –|S X}= 0
XŒ:s(XŒ) ] s(X)

{{O Q XŒ} p {(XŒ, X) is open}},

{O 'Q X}={(O, G) is open} p {G“ X}.

We organize the rest of this section as follows. ĈN(K) is estimated in
Section 5.1. Since ĈN(K) is an alternating sum of {ĝn(K)}Nn=0, Section 5.1
is mainly devoted to estimating ĝn(K). These estimates are directly used
to bound |R̂N(K)| in Section 5.2. Finally in Section 5.3, we estimate
ĈN(O)− ĈN(K).
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5.1. Estimate of ĈN(K) for N \ 0

5.1.1. Estimate of ĝ0(K )

To estimate ĝn(K) for n \ 0, we use the following inequalities:

e C
Y, OŒ, Oœ

JO, OŒ
|J|

JO, Oœ
|J|

j(OŒ, Y) j(X+Oœ, Y) [ 2 K(X), (5.3)

e C
Y

{j(O, Y) j(X, Y)−DO, Y DX, Y} [ 2 T(X). (5.4)

The proof of these inequalities is the same as that of (2.20) in ref. 1.

Lemma 5.2. Under the inequalities in P4,

|ĝ0(K)| [ e C
X

g0(O, X) [ e+C o e2, (5.5)

holds for some e-independent finite constant C. This proves (3.8) for n=0.

Proof. We begin with proving the inequality

g0(O, X) [ dO, X+ C
OŒ, XŒ

(l e)2JO, OŒ JXŒ, X

×{k(O, X) j(OŒ, XŒ)+j(OŒ, X) P(O ' XŒ)}. (5.6)

If X ( ] O) is the arrival point of two non-zero disjoint open paths, then at
least one of those paths enters X with a spatial bond. The contribution
from this case is bounded by

P({O M X} p {O–|S X})

[ C
XŒ : s(XŒ) ] s(X)

P({O M X} p {O Q XŒ} p {(XŒ, X) is open}). (5.7)

By the construction of the models, there is no contribution from the case
of O=XŒ to the right side. If two non-zero disjoint open paths emanate
from O, then at least one of them leaves O with a spatial bond. Therefore
we use the BK inequality to bound the right side of (5.7) by
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C
XŒ
l eJXŒ, X P({O M X} p {O M XŒ})

[C
XŒ
l eJXŒ, X {P({O M X} p {O SQ XŒ})+P({O SQ X} p {O ' XŒ})}

[ C
OŒ, XŒ

(l e)2JO, OŒ JXŒ, X {k(O, X) j(OŒ, XŒ)+j(OŒ, X) P(O ' XŒ)},

and thus obtain the inequality (5.6).
Using (5.3) and (5.6), we can bound |ĝ0(K)| by

e+(l |J|)2 e3 C
OŒ, Oœ, X

JO, OŒ
|J|

JO, Oœ
|J|

×{k(O, X) j(OŒ, X−Oœ)+j(OŒ, X) P(O ' X−Oœ)}

[ e+4 (l |J|)2Ka e2, (5.8)

and thus obtain (5.5) under the inequalities in P4. L

5.1.2. Estimate of ĝn(K) for n \ 1

In this section, we estimate ĝn(K) for n \ 1. We present in Lemma 5.3
an increasing event, of which the event in the definition of gn(O, X) is a
subset. Before using the BK inequality to this increasing event, we must
pay attention to points in diagrams where two disjoint open paths leave or
enter, as in the estimate of ĝ0(K). Thanks to this close observation and the
BK inequality, we can obtain a bound on |ĝn(K)| in Lemma 5.4, which
enables us to take a meaningful limit in e a 0.

First we present the increasing event stated above.

Lemma 5.3. For n \ 1,

3O — U1, 3
n

i=1
E(Vi, Ui+1; C(Ui, Vi)(Vi−1))

4

… 0
W1, ..., Wn

{L(O, W1, U1) p {M (U1, V1)
(W1, V1; W2, U2) 2 N (U1, V1)

(W1, V1; W2, U2)} p · · ·

· · · p {M (Un−1, Vn−1)
(Wn−1, Vn−1; Wn, Un) 2 N (Un−1, Vn−1)

(Wn−1, Vn−1; Wn, Un)} p R (Un, Vn)
(Wn, Vn, X)}, (5.9)
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provided that V0=O and Un+1=X, where

L(O, W, U)={O Q W} p {O Q U} p {W Q U},

R (U, V)
(W, V, X)={W M X off (U, V)} p {V Q X},

M (U, V)
(W, V; WŒ, UŒ)={W M UŒ off (U, V)} p {V Q WŒ} p {WŒQ UŒ},

N (U, V)
(W, V; WŒ, UŒ)={W M WŒ off (U, V)} p {V Q UŒ} p {WŒQ UŒ}.

The event R (U, V)
(W, V, X) is defined only when y(W) [ y(U) < y(V) [ y(X), and

the events M (U, V)
(W, V; WŒ, UŒ) and N (U, V)

(W, V; WŒ, UŒ) are defined only when y(W) [ y(U) <
y(V) [ y(WŒ) [ y(UŒ).

We omit the proof of the lemma because we can prove it as explained
in ref. 10.

Next we use the above lemma to estimate ĝn(K). If we naively use the
BK inequality, then

|ĝn(K)| [ C
W1, U1

P(L(O, W1, U1)) C
V1, W2, U2

p(U1, V1)

×{P(M (U1, V1)
(W1, V1; W2, U2))+P(N (U1, V1)

(W1, V1; W2, U2))} · · ·

· · · C
Vn−1, Wn, Un

p(Un−1, Vn−1) {P(M (Un−1, Vn−1)
(Wn−1, Vn−1; Wn, Un))

+P(N (Un−1, Vn−1)
(Wn−1, Vn−1; Wn, Un))}× e C

Vn, X
p(Un, Vn) P(R (Un, Vn)

(Wn, Vn, X))

[ {|p| e −2}n 3 e2 C
W, U
j(O, W) j(O, U) j(W, U)4

×3 sup
W, V
e C
X
k(W, X) j(V, X)4

×3 sup
W, V
e2 C

WŒ, UŒ
{k(W, UŒ) j(V, WŒ)+k(W, WŒ) j(V, UŒ)}

×j(WŒ UŒ)4
n−1

,

and hence |ĝn(K)| [ O(e −2n). In the diagram considered, however, there are
2 n+2 points where two disjoint open paths leave or enter. Thanks to this
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close observation, we thus obtain |ĝn(K)| [ O(e2), as explained in the
following lemma.

Lemma 5.4. For n \ 1, under the inequalities in P4,

|ĝn(K)| [ e C
X

gn(O, X) [ C o (CŒ m)n−1 e2, (5.10)

holds for some e-independent finite constants C and CŒ. This proves (3.8)
for n \ 1.

Proof. First we consider the case of n=1. We use Lemma 5.3, the
Markov property and the BK inequality to bound g1(O, X) by

C
W, (U, V)

p(U, V) P(L(O, W, U) p R (U, V)
(W, V, X)) {dW, U+(1−dW, U)}

[ C
W, (U, V)

p(U, V) 3g0(O, U) dW, U P(R (U, V)
(U, V, X))+P(sL(O, W, U) p R (U, V)

(W, V, X))

+C
WŒ

P(yL(O, W, U) p {(W, WŒ) is open} p R (U, V)
(WŒ, V, X))4

[ C
W, U

3g0(O, U) dW, U C
V

p(U, V) P(R (U, V)
(U, V, X))

+P(sL(O, W, U)) C
V

p(U, V) P(R (U, V)
(W, V, X))

+P(yL(O, W, U)) C
WŒ, V
l eJW, WŒ p(U, V) P(R (U, V)

(WŒ, V, X))4 , (5.11)

where

sL(O, W, U)={O Q W} p {O M U} p {W SQ U},
yL(O, W, U)={O Q W} p {O M U} p {W ' U}.

In order to estimate ;V, Xp(U, V) P(R (U, V)
(W, V, X)), we must pay attention

to the point X where two disjoint open paths enter in the diagram; we must
observe the point W as well, if W=U. Using repeatedly the BK inequality
and the inequalities
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(1− e) j(U+G, XŒ)=P(U ' XŒ),

(1− e) P(U+G“ X)=P(U 'Q X),

dU, XŒ+P(U ' XŒ) [ j(U, XŒ),

(1− e) dU, X−G+P(U 'Q X) [ P(U “ X),

(5.12)

we obtain

C
V, X

p(U, V) P(R (U, V)
(W, V, X)) [ eRa 1 1{W=U}+Ra 2 1{W ] U},

where, under the inequalities in P4,

Ra 1 — 8 (l |J|)2Ka [ C1 o,

Ra 2 — 2 l |J| (2 Ta+Ja/|J|+2 l |J| Ka e) [ C2 m,
(5.13)

for some constants C1 and C2, because Ja — supXJO, X is equal to 1 for the
nearest-neighbor model or to {(2 L+1)d−1} −1 for the spread-out model
such that Ja/|J| [ o holds for both models.

We only prove the latter inequality of (5.13); the former can be proved
similarly.

C
V

p(U, V) P(R (U, V)
(W, V, X)) {dV, X+(1−dV, X)}

[ {l eJU, X k(W, X)+(1− e) dU, X−G P(W–|S X)} dV, X

+C
V

{(1− e) dU, V−G+l eJU, V}

×{P({W M X} p {V–|S X})+P({W–|S X} p {V “ X})}

( • the close observation,)

[ l eJU, X k(W, X)+(1− e) dU, X−G C
XŒ
l eJXŒ, X j(W, XŒ)

+C
XŒ

(1− e) l eJXŒ, X {k(W, X) j(U+G, XŒ)

+j(W, XŒ) P(U+G“ X)}

+ C
V, XŒ

(l e)2JU, V JXŒ, X {k(W, X) j(V, XŒ)+j(W, XŒ) P(V “ X)}.

( • the BK inequality.) (5.14)
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By using the inequalities in (5.12), the first three terms of the right side of
(5.14) can be put together, and (5.14) is bounded by

C
XŒ
l eJXŒ, X 3k(W, X) j(U, XŒ)+j(W, XŒ) P(U “ X)

+C
V
l eJU, V {k(W, X) j(V, XŒ)+j(W, XŒ) P(V “ X)}4 .

We obtain the latter of (5.13) by summing the above expression over X and
using (5.3) and (5.4).

After defining Ra 3=l |J| Ra 2 and La1=1+4 (l |J|)2Ka e, which follows
from (5.8), we obtain

|ĝ1(K)| [La1 Ra 1 e
2+e C

W, U
P(sL(O, W, U)) Ra 2+e2 C

W, U
P(yL(O, W, U)) Ra 3.

We can also estimate ;W, U P(sL(O, W, U)) and ;W, U P(yL(O, W, U)) in the same
way as in proving the inequalities in (5.13); we must pay attention to the
points O and U to extract correct factors of e.

C
W, U

P(sL(O, W, U)) [ 4 (l |J|)2 (2+l |J|) Ka e —La2 e,

C
W, U

P(yL(O, W, U)) [ 4 (l |J|)2 (1+e) Ka —La3.

Under the inequalities in P4, La2 and La3 are bounded by C3 o for some
constant C3. This completes the proof of the inequality (5.10) for n=1.

Next we consider the case of n=2; the case of n \ 3 can be proved by
induction. Following the way of deriving (5.11), we can bound |ĝ2(K)| by

e C
X, W, (U, V),
WŒ, (UŒ, VŒ)

p(U, V) p(UŒ, VŒ) {P(L(O, W, U) pM (U, V)
(W, V; WŒ, UŒ) p R (UŒ, VŒ)

(WŒ, VŒ, X))

+P(L(O, W, U) pN (U, V)
(W, V; WŒ, UŒ) p R (UŒ, VŒ)

(WŒ, VŒ, X))}{dWŒ, UŒ+(1−dWŒ, UŒ)}

[ e2 C
WŒ, UŒ

{2 g1(O, UŒ) dWŒ, UŒ Ra 1+e −1 {P
sM
(O, WŒ, UŒ)+P

sN
(O, WŒ, UŒ)} Ra 2

+{P
yM
(O, WŒ, UŒ)+P

yN
(O, WŒ, UŒ)} Ra 3}, (5.15)
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where

P
sM
(O, WŒ, UŒ)= C

W, (U, V)
p(U, V) P(L(O, W, U) p sM

(U, V)
(W, V; WŒ, UŒ)),

P
sN
(O, WŒ, UŒ)= C

W, (U, V)
p(U, V) P(L(O, W, U) p sN

(U, V)
(W, V; WŒ, UŒ)),

P
yM
(O, WŒ, UŒ)= C

W, (U, V)
p(U, V) P(L(O, W, U) p yM

(U, V)
(W, V; WŒ, UŒ)),

P
yN
(O, WŒ, UŒ)= C

W, (U, V)
p(U, V) P(L(O, W, U) p yN

(U, V)
(W, V; WŒ, UŒ)),

and where

sM (U, V)
(W, V; WŒ, UŒ)={W M UŒ off (U, V)} p {V Q WŒ} p {WŒSQ UŒ},

sN (U, V)
(W, V; WŒ, UŒ)={W M WŒ off (U, V)} p {V M UŒ} p {WŒSQ UŒ},

yM (U, V)
(W, V; WŒ, UŒ)={W M UŒ off (U, V)} p {V Q WŒ} p {WŒ' UŒ},

yN (U, V)
(W, V; WŒ, UŒ)={W M WŒ off (U, V)} p {V M UŒ} p {WŒ' UŒ}.

These events are defined only when y(W) [ y(U) < y(V) [ y(WŒ) [ y(UŒ)
because of the definitions of M (U, V)

(W, V; WŒ, UŒ) and N (U, V)
(W, V; WŒ, UŒ).

We again follow the way of deriving (5.11) to bound P
sM
(O, WŒ, UŒ) by

C
W, U

3g0(O, U) dW, U C
V

p(U, V) P(sM (U, V)
(U, V; WŒ, UŒ))

+P(sL(O, W, U)) C
V

p(U, V) P(sM (U, V)
(W, V; WŒ, UŒ))

+P(yL(O, W, U)) C
Wœ, V
l eJW, Wœ p(U, V) P(sM (U, V)

(Wœ, V; WŒ, UŒ))4 . (5.16)

Following the way of proving (5.13) by paying attention to the point UŒ
where two disjoint open paths enter in the diagram (it is necessary to
observe the point W as well, if W=U), we obtain

C
V, WŒ, UŒ

p(U, V) P(sM (U, V)
(W, V; WŒ, UŒ)) [ eHa12 1{W=U}+Ha22 1{W ] U},
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where, under the inequalities in P4,

Ha12 — 4 (l |J|)2 (1+l |J|) Ka [ C4 o,

Ha22 — l |J| |p| (2 Ta+Ja/|J|+2 l |J| Ka ) [ C5 m,

for some constants C4 and C5. After defining Ha32=l |J| Ha22, we thus have

e C
WŒ, UŒ

P
sM
(O, WŒ, UŒ)R

a
2 [ e

2 C
3

i=1
Lai Hai2 Ra 2 [ C o m e2,

for some e-independent finite constant C.
We can also estimate the quantities concerning P

sN
(O, WŒ, UŒ), P

yM
(O, WŒ, UŒ)

and P
yN
(O, WŒ, UŒ) as

e C
WŒ, UŒ

P
sN
(O, WŒ, UŒ)R

a
2 [ e

2 C
3

i=1
Lai Hai2 Ra 2,

e2 C
WŒ, UŒ

P
yM
(O, WŒ, UŒ)R

a
3

e2 C
WŒ, UŒ

P
yN
(O, WŒ, UŒ)R

a
3

ˇ [ e2 C3
i=1

L̂i Hai3 R̂3,

where, under the inequalities in P4,

Ha13 — 4 (l |J|)2Ka [ C6 o, Ha23 — 2 l |J| |p| (Ta+Ja/|J|) [ C7 m,

and Ha33=l |J| Ha23 [ 4 C7 m, for some constants C6 and C7. This comple-
tes the proof of the inequality (5.10) for n=2. L

5.2. Estimate of R̂N(K) for N \ 1

We estimate R̂N(K) in this section. By the Markov property, we obtain

|R̂N(K)| [ C
(U, V)

gN−1(O, U) p(U, V) e C
X
j(V, X) [ ĝN−1(O) |p| q(l)/e,

which is equivalent to (3.9) used in Section 3.3. We have already seen that
ĝN−1(O) is bounded as in (5.5) and (5.10). Therefore if l < lc, then
q(l) <. and thus R̂N(K) converges to 0 as N ‘. for sufficiently large d
or L.
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5.3. Estimate of ĈN(O)− ĈN(K) for N \ 0

We devote this section to estimating Gyn=e;X y(X) gn(O, X) and
Gsn=e;X ||s(X)||2 gn(O, X) because, by the spatial symmetry of gn(O, X),
|ĈN(O)− ĈN(K)| is bounded by

C
N

n=0

3 e C
X

gn(O, X) |1−e iwy(X)|+e C
X

gn(O, X) |1− cos k ·s(X)|4

[ C
N

n=0

1 |w| Gyn+
||k||2

2 d
Gsn 2 .

This proves the inequality (3.13).
In order to estimate Gyn, we use the inequality

y(X) j(O, X)=e C
y(X)/e

n=1
k(O, X)

[ e C
y(X)/e

n=1
C
z ¥ Z

d
k(O, (z, n e)) j((z, n e), X)=e C

Z
k(O, Z) j(Z, X), (5.17)

which follows from the Markov property. We note that this inequality
implies equivalence between the estimate of Gyn and that of a quantity con-
cerning the irreducible two-point function gn(O, X) with an extra vertex.

We only estimate Gs0 because we have to estimate it more minutely
than8 Gyn and Gsn+1 for n \ 0 in order that the bootstrapping argument

8 We can easily obtain the bound on Gy0 in (3.14) by using the inequalities (5.6) and (5.17). We
can also obtain the other bounds in (3.14) by following the way of estimating ;x |x|2 hn(o, x)
in Section 3.2 of ref. 7.

works. Using the inequalities (5.4) and (5.6), we obtain

Gs0 [ l
2 e3 C

OŒ, XŒ, X
JO, OŒ JXŒ, X {||s(X)||2 k(O, X) j(OŒ, XŒ)

+2 {||s(X−OŒ)||2+||s(OŒ)||2} j(OŒ, X) P(O ' XŒ)}

[ (l e)2 C
OŒ, Oœ

JO, OŒ JO, Oœ {W(OŒ+Oœ)+2 W(OŒ−Oœ)

+2 ||s(OŒ)||2 {2 T(OŒ−Oœ)+ds(OŒ), s(Oœ)}}.

We estimate W(OŒ±Oœ) more minutely; we want to estimate it without
using supX W(X).
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W(OŒ±Oœ) [ e C
X

||s(X)|| ||s(X−OŒ + Oœ)|| k(O, X) j(OŒ±Oœ, X)

+||s(OŒ±Oœ)|| e C
X

||s(X)|| k(O, X)

×{j(OŒ±Oœ, X)−DOŒ±Oœ, X}

+||s(OŒ±Oœ)|| e C
X

||s(X)|| k(O, X) DOŒ±Oœ, X. (5.18)

By using the Schwarz inequality, the sum of the first and second terms is
bounded by

W(O)+||s(OŒ±Oœ)|| {2 T(O) W(O)}1/2.

Because of the presence of DOŒ±Oœ, X, the third term of (5.18) is bounded by

||s(OŒ±Oœ)|| e C
X

||s(X)|| {j(O, X)−DO, X} DOŒ±Oœ, X

[ 2 ||s(OŒ±Oœ)||2T(OŒ±Oœ).

By using ||s(OŒ±Oœ)||n [ 2n−1 {||s(OŒ)||n+||s(Oœ)||n} for n \ 1 and the
Schwarz inequality,

C
OŒ, Oœ

JO, OŒ
|J|

JO, Oœ
|J|

||s(OŒ±Oœ)||n [ 2n C
OŒ

JO, OŒ
|J|

||s(OŒ)||n [ (2 |V|1/2)n,

for n=1, 2.

Therefore

Gs0 [ (l |J|)2 {2 |V| (2 Ta+Ja/|J|)

+3 {W(O)+2 {2 |V| Ta W(O)}1/2+8 |V| Ta }} e2.

Since |V| defined in (3.26) equals 1 and z=d −1 for the nearest-neighbor
model and |V|=O(L2) and z=L2 m for the spread-out model, we obtain
Gs0 [ C z e2 under the inequalities in P4 for some constant C depending
only on CT and CW. This proves the bound on Gs0 in (3.14).
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